Регенеративный приемник прямого преобразования. Шестидиапазонный приемник прямого преобразования с эффективным подавлением наводок. Данные моточных узлов

Схема простого КВ приемника наблюдателя на любой радиолюбительский диапазон

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

Сегодня мы рассмотрим очень простую, и в тоже время обеспечивающую неплохие характеристики схему – КВ приемник наблюдателя – коротковолновика .
Схема разработана С. Андреевым. Не могу не отметить, что сколько я не встречал в радиолюбительской литературе разработок этого автора, все они были оригинальны, просты, с прекрасными характеристиками и самое главное – доступны для повторения начинающими радиолюбителями.
Первый шаг радиолюбителя в стихию обычно всегда начинается с наблюдения за работой других радиолюбителей в эфире. Мало знать теорию радиолюбительской связи. Только прослушивая любительский эфир, вникая в азы и принципы радиосвязи, радиолюбитель может получить практические навыки в проведении любительской радиосвязи. Эта схема как раз и предназначена для тех кто хочет сделать свои первые шаги в любительской связи.

Представленная схема приемника радиолюбителя – коротковолновика очень проста, выполнена на самой доступной элементной базе, несложная в настройке и в тоже время обеспечивающая хорошие характеристики. Естественно, что в силу своей простоты, эта схема не обладает “сногсшибательными” возможностями, но (к примеру чувствительность приемника около 8 микровольт) позволит начинающему радиолюбителю комфортно изучать принципы радиосвязи, особенно в 160 метровом диапазоне:

Приемник, в принципе, может работать в любом радиолюбительском диапазоне – все зависит от параметров входного и гетеродинного контуров. Автор этой схемы испытывал работу приемника только для диапазонов 160, 80 и 40 метров.
На какой диапазон лучше собрать данный приемник. Чтобы это определить, надо учесть в каком районе вы проживаете и исходить из характеристик любительских диапазонов.
()

Приемник построен по схеме прямого преобразования. Он принимает телеграфные и телефонные любительские станции – CW и SSB.

Антенна. Работает приемник на несогласованную антенну в виде отрезка монтажного провода, который можно протянуть под потолком комнаты по диагонали. Для заземления подойдет труба водопроводной или отопительной системы дома, которая подключается к клемме Х4. Снижение антенны подключается к клемме Х1.

Принцип работы. Входной сигнал выделяется контуром L1-C1, который настроен на середину принимаемого диапазона. Затем сигнал поступает на смеситель, выполненный на 2-х транзисторах VT1 и VT2, в диодном включении, включенных встречно-параллельно.
Напряжение гетеродина, выполненного на транзисторе VT5, подается на смеситель через конденсатор С2. Гетеродин работает на частоте в два раза ниже частоты входного сигнала. На выходе смесителя, в точке подключения С2, образуется продукт преобразования – сигнал разности входной частоты и удвоенной частоты гетеродина. Так как величина этого сигнала не должна быть более трех килогерц (в диапазон до 3-х килогерц укладывается “человеческий голос”), то после смесителя включен ФНЧ на дросселе L2 и конденсаторе С3, подавляющий сигнал частотой выше 3-х килогерц, благодаря чему достигается высокая избирательность приемника и возможность приема CW и SSB. При этом, сигналы АМ и FM практически не принимаются, но это и не очень важно, потому, что радиолюбители в основном используют CW и SSB.
Выделенный НЧ сигнал поступает на двухкаскадный усилитель низкой частоты на транзисторах VT3 и VT4, на выходе которого включаются высокоомные электромагнитные телефоны типа ТОН-2. Если у вас есть только низкоомные телефоны, то их можно подключать через переходной трансформатор, к примеру от радиоточки. Кроме того, если параллельно С7 включить резистор на 1-2 кОм, то сигнал с коллектора VT4 через конденсатор емкостью 0,1-10 мкФ можно подать на вход любого УНЧ.
Напряжение питания гетеродина стабилизировано стабилитроном VD1.

Детали. В приемнике можно использовать разные переменные конденсаторы: 10-495, 5-240, 7-180 пикофарад, желательно, чтобы они были с воздушным диэлектриком, но подойдут и с твердым.
Для намотки контурных катушек (L1 и L3) используются каркасы диаметром 8 мм с резьбовыми подстроечными сердечниками из карбонильного железа (каркасы от контуров ПЧ старых ламповых или лампово-полупроводниковых телевизоров). Каркасы разбираются, разматываются и от них спиливается цилиндрическая часть длиной 30 мм. Каркасы устанавливаются в отверстия платы и фиксируются эпоксидным клеем. Катушка L2 намотана на ферритовом кольце диаметром 10-20 мм и содержит 200 витков провода ПЭВ-0,12 намотанных внавал, но равномерно. Катушку L2 можно также намотать на сердечнике СБ а затем поместить внутрь броневых чашек СБ склеив их эпоксидным клеем.
Схематическое изображение крепления катушек L1, L2 и L3 на плате:

Конденсаторы С1, С8, С9, С11, С12, С13 должны быть керамическими, трубчатыми или дисковыми.
Намоточные данные катушек L1 и L3 (провод ПЭВ 0,12) номиналы конденсаторов С1, С8 и С9 для разных диапазонов и используемых переменных конденсаторах:

Печатная плата сделана из фольгированного стеклотекстолита. Расположение печатных дорожек – с одной стороны:

Налаживание. Низкочастотный усилитель приемника при исправных деталях и безошибочном монтаже в налаживании не нуждается, так-как режимы работы транзисторов VT3 и VT4 устанавливаются автоматически.
Основное налаживание приемника – налаживание гетеродина.
Сначала нужно проверить наличие генерации по наличию ВЧ напряжения на отводе катушки L3. Ток коллектора VT5 должен быть в пределах 1,5-3 мА (устанавливается резистором R4). Наличие генерации можно проверить по изменению этого тока при прикосновении руками к гетеродинному контуру.
Подстройкой гетеродинного контура надо обеспечить нужное перекрытие гетеродина по частоте, частота гетеродина должна перестраивается в пределах на диапазонах:
– 160 метров – 0,9-0,99 МГц
– 80 метров – 1,7-1,85 МГц
– 40 метров – 3,5-3,6 МГц
Проще всего это сделать, измеряя частоту на отводе катушки L3 при помощи частотомера, способного измерять частоту до 4 МГц. Но можно воспользоваться и резонансным волномером или генератором ВЧ (методом биений).
Если вы пользуетесь генератором ВЧ, то можно одновременно настроить и входной контур. Подайте на вход приемника сигнал от ГВЧ (расположите провод, подключенный к Х1 рядом с выходным кабелем генератора). Генератор ВЧ надо перестраивать в пределах частот в два раза больших, чем указано выше (например, на диапазоне 160 метров – 1,8-1,98 МГц), а контур гетеродина подстроить так, чтобы при соответствующем положении конденсатора С10 в телефонах прослушивался звук частотой 0,5-1 кГц. Затем, настройте генератор на середину диапазона, настройте на нее приемник, и подстройте контур L1-C1 по максимальной чувствительности приемника. Также по генератору можно откалибровать шкалу приемника.
При отсутствии генератора ВЧ входной контур можно настроить принимая сигнал радиолюбительской станции работающей как можно ближе к середине диапазона.
В процессе настройки контуров может потребоваться корректировка числа витков катушек L1 и L3. конденсаторов С1, С9.

Двухдиапазонный приемник прямого преобразования собран всего на двух микросхемах и трех транзисторах, но обладает неплохими эксплуатационными характеристиками. Благодаря применению на входе полосового фильтра (вместо одиночного контура) достигается хорошая избирательность по зеркальному и побочным каналам приема.

Входной каскад на полевом транзисторе VT1 позволяет получить высокую чувствительность (не менее 0,5 мкВ) и, кроме того, не нагружает контур L3-C4 полосового фильтра и позволяет получить отличное согласование со входом УВЧ микросхемы DA1.

В микросхеме, кроме усиления ВЧ, смешиваются принятый сигнал и сигнал генератора плавного диапазона. В результате преобразования на первичной обмотке трансформатора Т1 выделяется сигнал звуковой частоты. Трансформатор (согласующий, от любого карманного приемника) играет роль ФНЧ, частота среза которого составляет 2,5-3 кГц и устанавливается подбором емкости конденсатора С20.

Со вторичной обмотки сигнал подается на вход микросхемы DA2 усилителя низкой частоты, которая имеет большой коэффициент усиления. Она надежная, не возбуждается и не перегревается. Нагрузкой усилителя может быть 8-омная динамическая головка или головные телефоны. Уровень громкости устанавливается с помощью переменного резистора R14.

С выхода УНЧ, через резистор R12 и выпрямитель на диодах VD4 и VD5, на вывод 9 микросхемы DA1 подается напряжение АРУ.

ГПД выполнен в виде отдельного блока

для обеспечения наилучшей стабильности частоты Его частота перестраивается в диапазоне 7000 -7200 кГц. При приеме любительских радиостанций в диапазоне 40 м используется первая гармоника сигнала ГПД, а в диапазоне 20 м - вторая. При переходе с диапазона на диапазон переключаются только входные полосовые фильтры L1-L2-C2-C3-L3-C4.

Катушки L1-L3 - готовые, установленные на диапазонных планках (41 и 25 м) радиоприемника ВЭФ-202. Количество витков подбирается так. К обмотке контурной катушки бывшего гетеродина доматываются витки теперь не нужной катушки связи (планка диапазона 41 м) и, наоборот, отматываются витки с входной катушки на планке диапазона 25 м чтобы “подстроечники” катушек могли свободно перемещаться, их резьбу надо смочить спиртом.

Катушка L4 ГПД намотана на готовом фабричном каркасе 010 мм и длиной 27 мм Каркас имеет канавки для укладки провода. Число витков -12, отвод - от 4-го витка. Провод - посеребренный 00,31- 0,35 мм.

Настройка приемника сводится к подбору деталей, обозначенных на схеме “звездочкой”, и укладке границ диапазона плавного гетеродина. Для подстройки полосовых фильтров на переднюю панель приемника выводится ручка конденсатора С1

Конечно, приемник можно сделать многодиапазонным - например, использовав для этой цели бывший отечественный вещательный радиоприемник ВЭФ-202 почти со всеми его собственными узлами (верньерным устройством с конденсатором переменной емкости, барабанным переключателем с диапазонными планками, разъемами входов и выхода, и прочим).

Уважаемые читатели, Вы знаете что такое: детектор, «деревянная антенна», металлический изолятор? А почему это зеркало зеркальное? Что такое радио FM? Вы слышали про такое как: гармоники, обратная связь, супергетеродин? Из какой «оперы» такие названия как: максимум максиморум, DSB, SSB, ПАЛСЕКАМ? Что чернее чёрного? И почему это кино, которое Вы смотрите по телевидению, короче на 4%? А Вы знаете как подключить два-три телевизора к одной антенне? А почему одни спутники «висят» над землёй, а другие движутся? Если Вы затрудняетесь с ответом или впервые слышите обо всём этом, или Вам просто интересно, то все мои мини-лекции для Вас!

Все мини-лекции в большей или меньшей степени связаны между собой. И содержание предыдущей лекции так или иначе раскрывает содержание последующей! Насколько возможно, постараюсь Вас не нагружать подробностями. Думаю, что Вы узнаете что-то новое для себя, полезное и посмотрите на всё другими глазами!?

Что же это за приёмник такой, прямого преобразования?! Это, что-то новенькое? Но как оказалось, новое - хорошо, очень хорошо забытое старое! Про прямое преобразование впервые я узнал где-то в семидесятые и то случайно. Собрал небольшой приёмник схема на рис3., - да, работает и даже неплохо! Но каково же было моё удивление когда я узнал, что этот принцип случайно был применён ещё в 1901-м году. И была обнаружена некая закономерность, что случайно включенный генератор позволил резко повысить качество приёма. Такой генератор был назван гетеродином. Умный словарь нам опять же поясняет, что гетеродин с греческого heteros «другой» + dynamis «сила». То есть вспомогательный генератор, придающий нам силу, большие возможности. С появлением амплитудной модуляции и новых методов приёма все «гетеро» стали как-то уходить на второй план. А с изобретением супергетеродина в 30-х годах про эти «гетеро» и вообще забыли напрочь!

О том, что такое супергетеродин я уже рассказывал Вам в предыдущей лекции. А почему же именно супер? И что такое супер, - слово которое нередко звучит сейчас со всех сторон? А тот же умный словарь поясняет, что супер от латинского super «сверху, над». А сверху, над, это над чем? А над тем, что в начале радиоэры в приёмниках использовалось для приёма телеграфных сигналов, то есть над гетеродином. С помощью этого самого гетеродина можно было принимать сигналы не только на телеграфный аппарат, но и на слух! Что сейчас, до сих пор и практикуется. И при помощи того же самого гетеродина, чтоб он был здоров! А супер это как бы над тем вот телеграфным гетеродином. Так, что получается если в бытовых приёмниках (как пример в предыдущей лекции) нет гетеродина для приёма телеграфа, то стало быть он и не супергетеродин, а так себе, - чёрти, что и сбоку дверца?! Ну дык, раз уж так назвали?.. Ну и чёрт с ним, с бытовым приёмником, пусть будет супергетеродином!

Итак, мы с Вами познакомились на предыдущих лекциях с видами приёма и самими приёмниками. Это: детекторные, прямого усиления и супергетеродин. Детекторные и прямого усиления приёмники одного и того же принципа. Настройка на нужную частоту, детектирование и усиление. И более ничего! В супергетеродине (блок-схема рис1.) путь от антенны и до детектора несколько иной. Сигнал после фильтрации входным контуром зеркальных и прочих каналов попадает в смеситель. Туда же попадает частота вспомогательного генератора, - гетеродина. На выходе смесителя от такого воздействия получается частота биения, названная промежуточной. После дополнительного усиления она попадает наконец-то в детектор. Ну, далее всё также как и в приёмнике прямого усиления.

А так как человек существо мыслящее, то ему вдруг стукнуло, а почему бы не обойтись без всяких промежуточностей?.. А взять, да получить сразу же результат, - звуковую частоту? Сказано-сделано! Так родился новый принцип, - принцип прямого преобразования. Стало быть и приёмники стали называться приёмниками прямого преобразования. Хорошо? Хорошо-то хорошо, да ничего хорошего?! Как оказалось, что для приёма популярной амплитудной модуляции такой принцип мягко говоря не пригоден! А уж про частотную даже и говорить не стоит. А для чего же он тогда пригоден?

На рис2. показана блок-схема такого приёмника прямого преобразования. Если приглядеться, то многое напоминает супергетеродин... На схеме ПФ - полосовой фильтр, тот же контур, что и в супергетеродине. После смесителя тоже стоит фильтр, только не какой-то там промежуточной, а сразу же низкой частоты, звуковой. А далее аналогично рис1. УНЧ, - усилитель низкой частоты и громкоговоритель (головные телефоны). Усиление как видите в основном происходит в УНЧ и никаких-то там сложнейших фильтров! А выжимать из УНЧ все соки мы уже давно научились!

На рис3. Вы видите уже принципиальную схему простого приёмника испробованного мною ещё в восьмидесятые годы. Если кто-то, когда-то, что-то собирал (приёмники, усилители и пр.) могли заметить, что нет в схеме ничего сверх-сверх, обычные и вполне доступные комплектующие! И схема уж всяко проще любого супергетеродина. Хотя чувствительность в пять раз выше обычного бытового приёмника. И по показателям даже приближается к промышленным, связным!

Чтобы не загромождать картинку я убрал данные составляющих. Если у кого-то появится интерес, - без проблем, через E-mail стало быть! Плюс ко всему, есть ещё и электронные книги в тему. На схеме: жёлтыми метками обозначен входной контур. Зелёным цветом два диода, - смеситель. Пурпурные метки, фильтр НЧ. Синий цвет, всё, что касается УНЧ. И наконец, красным цветом все составляющие гетеродина.

Теперь, когда Вы немного в теме, поговорим о том что же это за прямое преобразование?! И хотя всё это на стадии бесконечных экспериментов, но?.. Но всё это в основном делается радиолюбителями, даже довольно грамотными! И один из них пишущий! Это Поляков Владимир Тимофеевич. По крайней мере несколько его книг можно найти в сети или в магазинах в бумажном варианте.

Это книги: «Радиолюбителям о технике прямого преобразования»; «Приёмники прямого преобразования для любительской связи»; «Трансиверы прямого преобразования» и ряд других.

Так кто же применяет этот принцип прямого преобразования? И вообще в чём кайф от этого всего? Ну!.. Пока это всё применяют радиолюбители-коротковолновики. Или просто интересующиеся радиолюбительством. Какой же вид модуляции в настоящее время применяют коротковолновики для проведения связей? Ушли в прошлое такие виды как АМ (Амплитудная модуляция) и ЧМ (Частотная модуляция). И, что? Для телеграфной связи (CW) собственно ничего не изменилось: всё те же посылки точек и тире, в виде высокочастотных импульсов, а в телефонии - SSB, так называемая связь на одной боковой полосе. Как получается SSB-сигнал я рассказывал в Мини-лекции «Модуляция». В общем виде (так уж всё получается!) мы принимаем набор радиочастот с изменяющейся амплитудой и каждая такая радиочастота первоначально соответствовала определённой звуковой!

А как определить что, есть что? Правильно! Точкой опоры является несущая частота. Но это в АМ-сигнале. Там расстояние на частотной шкале от несущей до какой либо радиочастоты соответствовал определённой, звуковой! Железная привязка! Но несущую отрезали и?.. И теперь её нужно восстановить, но уже на месте приёма. Но как попасть куда надо? А надо ли? И, что произойдёт если не туда, куда надо? Конца света конечно не будет, а всего лишь сдвиг звукового спектра! Голос оператора с той стороны (в большинстве случаев Вы его просто можете не знать?) может изменяться в больших пределах и Вы лично решаете какой Вам приятнее?! А меняя расстояние (на шкале частот) между восстановленной несущей и спектром радиочастот боковой полосы путём настройки, Вы заставляете своего корреспондента говорить то басом, то тенором... Естественно, это Ваш выбор!

А, что телеграф? Как SSB-сигнал, так и CW, телеграфный на обычный бытовой приёмник Вы не примете. Точнее примете, но толку никакого! Телеграф будет хлопать Вам по ушам и не более, а SSB какое-то кваканье-хрюканье неразборчивое и всё! И только при включение искусственной несущей (гетеродина) всё меняется до неузнаваемости! Телеграф начинает мелодично пиликать. SSB превращается в чистую человеческую речь!

Но проблема зеркальных каналов только в простых приёмниках неразрешима. В более сложных, ненужную полосу пропускания (зеркальный канал) убирают так называемым фазовым методом! На рис5. (a) осцилограмма фазового метода подавления зеркального канала. В данном случае нижней боковой полосы пропускания (НБП). Зелёным цветом помечена оставшаяся верхняя боковая полоса пропускания (ВБП). В реальности полоса пропускания будет выглядеть как на рис2. (a), но без нижней боковой, та, что обозначена синим цветом. Так, что не всё так плохо?! В случае приёма прямого преобразования (с подавленной одной боковой полосой) субъективно эфир кажется более чистым и прозрачным! И даже при очень слабом сигнале есть 100% уверенность, что Вы принимаете истинную частоту, а не зеркально-комбинационную грязь?!

Как же всё это выглядит в реальности при приёме на наш простой приёмник рис3.? Но с телеграфом там можно не беспокоиться, иногда такая ситуация (с двумя полосами пропускания) бывает даже полезна! Посмотрите на рис4.(b). Скажем у нас основной канал слева от fг частоты гетеродина, зеркальный справа. Мы можем перестроить частоту гетеродина правее зеркального. После чего он превратится в основной, но уже отодвинутый от какой-нибудь помехи! Так часто делается. А что с SSB? Здесь гораздо хуже! Мешающий сигнал рис4.(a)(SSB и имеющий такую же боковую полосу {красного цвета}, что и основной {зелёного цвета}) в силу своего положения относительно несущей, оказывается вывернутым наизнанку! Самые низкие частоты речевого спектра становятся верхними, а верхние нижними! Речь становится отвратительной и непонятной... На рис4.(с) видны пересекающиеся спектры основного и зеркального каналов, хотя они и не находятся на одной частоте! И если радиолюбителей это ещё как-то устраивает (они выкручиваются как могут?!), то профессионалов, - нет! По крайней мере пока я не слышал о применение прямого преобразования в профессиональной технике?! Но это пока...

То о чём я хочу Вам рассказать далее не очень относится к теме, а скорее к её практической стороне. На рис5. показана передняя часть приёмника прямого преобразования. Очень похожего на промышленный образец? Ну, в общем, это где-то, так! Маленькая ручка управления слева (RF) это аттенюатор, по-русски регулятор уровня сигнала, поступающего из антенны. Вторая маленькая ручка, она справа внизу, регулятор громкости (AF). Тумблер переключения фильтров НЧ (CW/SSB) в правом верхнем углу лицевой части приёмника. И наконец-то (посередине) ручка настройки на частоту станции. Так-как аппарат однодиапазонный (80 метровый), то и шкала одна. В принципе перестроить на другой диапазон не составит большого труда.

А откуда я всё это взял, этот приёмник очень похожий на промышленный? История такова. Некто польский радиолюбитель (SP5DDJ) разработал и материализовал данный приёмник. Он изначально предназначался для начинающих радиолюбителей. Как уж там всё дальше было, только вот я обнаружил некий сайт http://radio-kits.ucoz.ru/index/prostoj_ppp_na_80_m/0-25 а уже оттуда вышел на сайт самого автора разработки. Одним словом, некто продаёт как бы наборы для сборки такого приёмника, - своего рода радиоконструктор! А так-как цены указаны в гривнах, то не трудно догадаться откуда уши торчат?! Как бы там не было, но на сайте много фото и есть даже видео о сборке приёмника и даже демонстрация его работы. Даже если Вы не собираетесь контактировать с автором того сайта и расплачиваться с кем-то гривнами, то можете хотя бы послушать демонстрацию работы приёмника. И если Вы внимательны, то можете обратить внимание на некоторые неудобства в этом приёмнике! Он в основном предназначен только чтобы просто послушать, а не работать по-серьёзному в эфире!

Кстати, в Ютюбе есть видео:
это первая часть https://www.youtube.com/watch?v=8KhM0CwVxUc
а, это вторая https://www.youtube.com/watch?v=GUiuzEwpzPo

Продолжение темы в следующей мини-лекции «Сверхрегенератор»

Рецензии

Ежедневная аудитория портала Проза.ру - порядка 100 тысяч посетителей, которые в общей сумме просматривают более полумиллиона страниц по данным счетчика посещаемости, который расположен справа от этого текста. В каждой графе указано по две цифры: количество просмотров и количество посетителей.

Н а этой странице представлена глава из книги В. Т. Полякова "Радиолюбителям, о технике прямого преобразования" издания 1990 г - "приемник на 80 м".

Принципиальная схема приемника приведена на рисунке ниже.

Сигнал из антенны через конденсатор связи С1 поступает на входной контур L1 C10 C11 и далее на смеситель, выполненный на двух включенных встречно-параллельно кремниевых диодах VD1, VD2. Нагрузкой смесителя служит П-образный фильтр нижних частот L3 C10 C11 с частотой среза 3 кГц. Напряжение гетеродина подается на смеситель через первый конденсатор фильтра - С10.

Гетеродин приемника собран по схеме с емкостной обратной связью на транзисторе VT1. Катушка контура гетеродина включена в коллекторную цепь. Гетеродин и входной контур перестраиваются по диапазону одновремено, сдвоенным блоком конденсаторов переменой емкости С3, С6, причем частота настройки гетеродина(1,75...1,9МГц) вдвое ниже частоты настройки входного контура.

Усилитель НЧ выполнен по схеме с непосредственой связью между каскадами, на транзисторах VT2, VT3. Нагрузка усилителя служат высокоомные телефоны с сопротивлением постоянному току 4 кОм, например ТА-4.

Приемник может питаться от любого источника напряжением 12 в, потребляемый ток - около 4 мА. Катушки приемника L1 и L2 намотаны на каркасах диаметром 6 мм и подстраиваются сердечниками из феррита 600НН, диаметром 2,7 и длиной 10...12 мм(можно использовать широко распостраненные унифицированные каркасы от катушек радиовещательных радиоприемников). Намотка - виток к витку. L1 содержит 14 витков провода ПЭЛШО 0,15, L2 - 32 витков провода ПЭЛШО 0,1. Отводы у обеих катушек - от четвертого витка, считая от заземленного провода.

Катушка фильтра L3 индуктивностью 100 мГ намотана на магнитопроводе К18×8×5 из феррита 2000НН и содержит 250 витков провода ПЭЛШО 0,1...0,15. Можно применить магнитоповод К10×7×5 из того же феррита, увеличив число витков до 300, либо К18×8×5 из феррита 1500НМ или 3000НМ(в этом случае обмотка должна состоять из 290 или 200 витков, соответственно).

В крайнем случае, при отсутствии ферритовых магнитопроводов катушку фильтра можно заменить резистором сопротивлением 1...1,3 кОм. Избирательность и чувствительность приемника при этом несколько ухудшаться. Блок переменных конденсаторов использован от приемника "Спидола". Можно применить и другой блок, но обязательно с воздушным диэлектриком. Для облегчения настройки на SSB станции желательно оснастить блок хотя бы простейшим верньером.

В гетеродине приемника хорошо работают транзисторы КТ315 и КТ312 с любым буквенным индексом. Для усилителя НЧ пригодны практически любые низкочастотные p-n-p транзисторы. Желательно, однако, чтобы VT2 был малошумящим(П27А, П28, МП39Б),а коэффициент передачи тока каждого из транзисторов был не ниже 50...60. Конденсаторы С2,С4,С5,С7 - КСО или керамические. Остальные детали могут быть любых типов.

Шасси приемника состоит из передней панели размерами 180×80 мм и двух боковых планок длиной по 110 и высотой 20 мм, привинченых по бокам передней панели в нижней ее части. Все эти детали выполнены из дюралюминия. К планкам крепится монтажная плата размерами 180×55 мм из фольгированного гетинакса. Расположение деталей на плате, на рисунке ниже.

Эскиз печатных проводников не приводится, так как расположение проводников зависит от размеров использованных деталей. Печатный монтаж не обязателен. Если плата изготовлена из нефольгированного материала, вдоль нее следует проложить несколько "земляных" шин. Чем больше площадь таких шин, тем лучше экранировка деталей от внутренних и внешних наводок.

Налаживание приемника начинают с проверки режимов транзисторов, по постоянному току. Напряжение на коллекторе транзистора VT3 должно составлять 7...9 в. Если оно отличается от указанного, подбирается резистор R3. Напряжeние на эмиттере транзистора VT1 должно быть равно 6..8 в. Его регулируют подбором сопротивления резистора R1.

Затем следует убедиться в наличии генерации, замыкая выводы катушки L2. Уровень шума в телефонах должен при этом несколько снизиться, из-за уменьшения шумов смесителя. Подсоеденив антенну, производят настройку на какую-либо станцию и подбирают положение отвода катушки L2(в пределах ±1 - 2 витков) по наибольшей громкости приема. От тщательности выполнения этой операции зависит чувствительность приемника.

Диапазон настройки устанавливают сердечником катушки L2 с помощью ГСС или прослушивая сигналы любительских станций. В последнюю очередь настраивают входной контур вращением сердечника катушки L1 по наибольшей громкости приема. Связь с антенной устанавливают конденсатором C1 такой, чтобы большинство станций прослушивалось со средней громкостью. Это избавляет от введения специального регулятора громкости.

Правильно налаженный приемник имет коэффицинт усиления, измереный как отношение звукового напряжения на телефонах, к высокочастотному напряжению на клеммах антенны, около 15 000. Напряжение собственых шумов приемника, приведеного к клемме антенны, не превышает 1мкВ. Телеграфный сигнал величиной 1,5 ...2 мкВ уже хорошо различается в телефонах.

Шум эфира при использовании антенны длиной всего несколько метров намного превосходит собственные шумы приемника. Однако, для получения достаточной громкости приема желательно, чтобы длина антенны была не менее 15...20 м.

Приемник прямого преобразования для начинающих радиолюбителей пользуется неослабевающим интересом. Описанная конструкция работает на широко распространенных диапазонах 80 м, и 40 м. Поскольку наблюдается большой интерес к системам с прямым преобразованием частоты. Была разработана схема приемник прямого преобразования на 80 и 40 метров. На не дорогих и популярных деталях, которые найдутся практически у каждого радиолюбителя в ящике. При хорошем прохождении приемник обеспечивает прием сигналов как телеграфа (CW) так и (SSB) в полосах 3,5-17 МГц. Одним из недостатков, возникающих в результате прямого преобразования, является прием двух сигналов.

Как это работает?

Принцип прямого преобразования частоты уже объяснялся много раз. Но следует помнить, что акустический сигнал получается, как разность частот входного сигнала и сигнала от генератора.

Приемник прямого преобразования принципиальная схема показана на рисунке.

– переключатель диапазона PZ1 80 / 40m

Коммутация LC (входных и генераторных) цепей

– потенциометры: P1 (регулировка громкости), P2 (грубая настройка), P3 (точная)

– T5-транзистор, обеспечивающий подключение малошумящих наушников

– переключатель питания PZ2 с Li-Ion 2×3,7В аккумуляторами (позволяет переключать с внешнего источника питания 12В на внутренний источник питания)

За тем проследим за ходом сигнала в схеме с прямым преобразованием из антенны до наушников. Вход P1 имеет функцию аттенюатора и в то же время регулятора громкости на входе антенны. Следующим элементом является резонансный контур, это входной фильтр 40 м, фильтрующий сигнал от антенны на вход усилителя транзистор T1 (переключатель PZ1 в верхнем положении, как на схеме). Конденсатор C1 вместе с основной катушкой L1 создает резонансный контур на частоте около 7,1 МГц. После установки переключателя PZ1 в нижней положение конденсатор C1 будет подключен к конденсатору C17, изменяя частоту резонансного контура примерно на 3,7 МГц.

Входной сигнал после усиления с T1 направлен на смеситель, состоящий из двух импульсных диодов D1-D2, соединенных встречно параллельно. Система работает как ключ, закрывая цепь с частотой, равной двойной частоте генератора. Важным свойством такого смесителя является то, что генератор должен быть настроен на частоту, вдвое превышающую частоту входного сигнала, что очень важно из-за большей стабильности генератора и меньшей способности проникать сигнала генератора в антенну.

Потенциометр R4 используется для точного баланса детектора. Генератор YFO на транзисторе T2 подает на детектор сигнал в диапазоне 3500-3600 кГц для диапазона 40 м и 1750-1900 кГц для диапазона 80 м.

Рабочая частота генератора определяется рабочей частотой контура L2C5. Катушка L2 имеет отвод от середины обмотки и работает в диапазоне 40 м (нижняя половина замыкается на землю, используя вторую секцию переключателя PZ1, как на схеме). Настройка частоты генератора реализована с помощью варикапа D3 типа BB112.

В этом случае перестраивание происходит путем изменения напряжения, приложенного к катоду варикапа от потенциометра P2 (основная настройка). Дополнительный потенциометр P3 функционирует как простой прецизионный тюнер. Который обеспечивает точную настройку принимаемой станции (диапазон настройки не является постоянным и является самым большим в верхней части частотного диапазона). Лучшим решением для настройки точности и комфорта было бы использование многооборотного потенциометра, но – без использования шкалы – вы даже не можете определить приблизительную частоту приема.

Калибровка частоты сверху (прием 7.2 МГц) позволяет использовать конденсатор C19. Дополнительный конденсатор C18 полезен при калибровке частоты 3,8 МГц (может оказаться ненужным при точном выборе числа витков катушки).

Диапазон настройки генератора в полосе 40 м ограничен снизу резистором R16.

После установки переключателя PZ1 в нижнее положение (диапазон 80 м) вся обмотка L2 работает, а диапазон настройки увеличивается за счет добавления дополнительного резистора R14. При правильно заданных диапазонах генератора в крайних положениях потенциометра P2 получается прием любительских полос 3,5-3,8 МГц и 7,0-7,2 МГц.

На следующих двух транзисторах T3 и T4 построен двухступенчатый усилитель НЧ. Чтобы подключить наушники на выходе был добавлен дополнительный эмиттерный повторитель на транзисторе Т5. При использовании стереонаушников подключите их параллельно через соответствующее контактное соединение в гнезде для наушников.

Способ питания приемника, благодаря переключателю PZ2 возможно питать от внешнего источника питания около 12 В или от внутренних батарей, что удобно. Например, при работе в полевых условиях или устранении помех от сети электропитания.

В любом случае схема генератора питается стабилизированным напряжением 5 В, выведенным из стабилизированного блока питания 78L05.

Сборка и ввод в эксплуатацию приемник прямого преобразования на 80 и 40 метров.

Вся схема приемника была собрана на односторонней плате (рисунок).

Разумеется, такую ​​плату можно подготовить вручную, взять фольгированный стеклотекстолит с размерами 100×75 мм, вырезать в виде квадратов со сторонами около 8 мм. Такие площадки, изолированные от общего провода, могут быть изготовлены любым способом (травление, фрезеровка или резак).

Сборка элементов приемника на печатной плате показана на рисунке.

На другой стороне платы есть внутренний источник питания и все элементы управления и разъемы.

Разъемы (антенна, питание и наушники) были прикреплены к задней стенке приемника, а потенциометры (P1, P2, P3) были установлены на передней панели. Слева был установлен переключатель диапазонов PZ1 рядом с катушками L1 и L2. Корпус приемника был изготовлен из стеклотекстолита полосок высотой 40 мм, спаянных вместе с монтажной платой. Верхняя и нижняя часть корпуса также могут быть выполнены из стеклотекстолита или алюминиевого листа. Конечно, каждый может выбрать другой металлический корпус, но предлагаемая конструкция выполняет свою задачу хорошо.

В любом случае целесообразно собрать элементы после подготовки всех компонентов корпуса и крепления регулирующих элементов и гнезд. Катушки схемы являются наиболее сложными, поэтому стоит обратить на них особое внимание, поскольку параметры приемника зависят в основном от них.

Катушки приемника были намотаны проволокой 0,4 на двух тороидальных сердечниках T50-2 с наружным диаметром 12,7 мм. Это красные сердечники с размерами 12,7×7,7×4,83 мм и AL = 4,9. Антенная катушка L1 (5uH) содержит 32 витка с отводом от 6 витка от соединения с общим проводом, и катушка связи L1 (тот же провод). Катушка генератора L2 (12.5uH) содержит 50 витков провода с отводом посередине, то есть после 25-го витка катушки (около 3.2uH). Все обмотки должны быть равномерно распределены по всей окружности, и после намотки рекомендуется проверить их с помощью измерителя индуктивности или мультиметра.

При включении схемы сначала проверьте значения напряжения на коллекторах транзисторов, если они близки к примерно половине напряжения питания. В случае существенных различий (которые могут иметь место с использованием транзисторов и другого коэффициента усиления), базовые резисторы должны быть скорректированы.

Убедившись, что рабочие напряжения всех транзисторов установлены правильно, необходимо проверить генератор. Выходную частоту приемника можно проверить с помощью частотомера, соединенного через конденсатор около 20 пФ, например, с резистора R4 или дополнительным приемником (с короткой антенной в виде провода), подобной нашему приемнику (в начале резистор R6 должен быть установлен на максимальный сигнал). Чтобы получить нижний и верхний диапазоны, выполните следующие операции в крайних положениях основной ручки настройки.

Сначала установите ползунок P2 в крайнее правое положение (P3 может быть посередине), а переключатель PZ1 – в положение 80 м. Если напряжение на катоде диода близко к 5 В, крайние выводы потенциометра P2 должны быть заменены.

При таких настройках частота генератора должна быть немного выше 1,9 МГц. Если частота не совпадает ее корректируем конденсатором (C19) точно до значения 1900 кГц, что соответствует принятой частоте 3,8 МГц. Если этого не может быть достигнуто с помощью конденсатора, вам нужно будет отрегулировать конденсатор C5 (уменьшение приведет к увеличению частоты). Если возникнет желание откорректировать число витков катушки L2, это нужно сделать симметрично, то есть по обе стороны от отвода.

После перемещения PZ1 до 40 м частота должна быть близка к 3,6 МГц. Лучше, если она будет немного выше, потому что тогда его можно легко отрегулировать, подбором конденсатора C18. Также может потребоваться перемещение отвода, что физически не так просто, потому что тогда вы должны намотать на одну сторону, а с другой – отматывать ту же самую часть витков катушки. В любом случае вам нужно получить ровно 3600 кГц, что соответствует принятой частоте 7.2 МГц. Может случиться так, что ранее установленное значение 1900 кГц изменилось, поэтому вам нужно снова его исправить, пока он не будет работать.

Установка более низких значений частоты будет проще, если вы сначала включите установочный потенциометр R16 вместо, например, 47k. После установки P2 в крайнее левое положение и PZ1 до 40 м, значение R16 должно быть выбрано так, чтобы частота генератора составляла 3500 кГц, что соответствует принятой частоте 7,0 МГц. В свою очередь, после перемещения PZ1 до 80 м, значение R14 должно быть выбрано так, чтобы частота генератора составляла 1750 кГц (полученная частота 3,5 МГц).

Если невозможно получить настройку нижних диапазонов таким образом, где работают телеграфные станции, это означает, что диапазон настройки слишком мал то надо увеличить конденсатор C20, но вся операция настройки должна быть выполнена заново. Эта проверенная процедура также будет полезна при настройке более узких диапазонов, ограниченных, например, наиболее используемым SSB участка. В этом случае вместо варикапа D3 BB112 вы можете использовать другой вариант с меньшим диапазоном (может быть достаточно двух диодов BB105).

При настроенном генераторе, конечным этапом настройки приемника будет проверка его работы с подключенной антенной. Также стоит попытаться выбрать значение конденсатора C1 для самого сильного сигнала принимаемой станции в середине диапазона 40 м. Наконец, установите ползунок R6 в наилучшее соотношение сигнал / шум.

Последним шагом будет создание временной шкалы частот вокруг потенциометра P2

Потенциометр R4, используемый для точного баланса детектора, можно установите минимальный сигнал на резисторе R3 с помощью, например, вч пробника к мультиметру.

При сопряжении диоды R4 могут быть опущены, например, путем замыкания частей провода. Приемник с двух диапазонной антенной 80/40 м позволил принять достаточное количество местных и зарубежных станций CW / SSB. Антенна диполь: 2×19,5 м, соединенный одним коаксиальным кабелем.

Случилось так, что в определенное время и в особых условиях распространения радиоволн можно было слышать станции в приемнике на частоте 40 м независимо от настройки частоты. Этот нежелательный эффект снижается после включения аттенюатора P1. Использование этого аттенюатора также было необходимо в случае близкой, сильной радиостанции – соседей. Любительские диапазоны 80 м и 40 м в течение дня обычно подходят для ближней радиосвязи. Ночью эти диапазоны «открываются», и можно слушать европейские страны и даже станции с других континентов (DX).